BEWARE! THIS DRAFT HAS SOME SYMBOLS THAT DO NOT MATCH THOSE WE HAVE PREVIOUSLY USED. THE LETTER USED FOR TRANSLATION WAS \vec{d} BUT HERE IT IS \vec{t}. THE SYMBOL FOR PARALLEL TRANSLATION TO THE AXIS WAS \vec{d_{\Vert}} BUT HERE IT IS \vec{d} AND THEREFORE d = \Vert\vec{d}\Vert SO \vec{d} = d\vec{l}.
In Parallelograms, Plücker Coordinates and Dual Numbers we had a line L with Plücker coordinates \big(\vec{l}, \vec{m} \big) where \vec{l} is a unit vector in the direction of line L and \vec{m} = \vec{p}\times\vec{l} where \vec{p} can be chosen perpendicular to L so \vec{l}\cdot\vec{m} = 0. Let the dual quaternion of these Plücker coordinates be: \pmb{l} + \epsilon\pmb{m} = \vec{l} + \epsilon\vec{m}\tag{1}The standard dual quaternion \pmb{r_0} + \frac{\epsilon}{2}\vec{t}\pmb{r_0} for translation and rotation is not suited for Plücker Coordinates since it assumes a rotation axis through the origin and that means \vec{p_{\bot}} = 0 and \vec{m} = 0 which isn't what we want. What we want is this displacement to occur around axis \mathrm{L} which does not pass through the origin but does pass through some point \mathrm{P}. We can obtain the dual quaternion for this axis offset by \vec{p} by applying the translation dual quaternion 1 + \epsilon\frac{\vec{p}}{2} to the rotation dual quaternion \pmb{\hat{r}} for the unit vector \vec{l}. However, from the post Unit Dual Quaternion For Translation And Rotation we can simply change this unit dual quaternion into the regular unit rotation quaternion \pmb{r_0}:
\pmb{\hat{r}} = \pmb{r_0} + \epsilon(0) Recall that a regular rotation quaternion in terms of \theta was derived in Extracting the Cross and Dot Products from the Quaternion Rotation Operator and for the unit vector \vec{l} would be: \pmb{r_0} = \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l}Since this will be a transformation operation of the regular quaternion \pmb{r_0}, this quaternion has to be multiplied on both sides by the translation quaternion. We have seen this "quaternion sandwich operation" before with rotations but now we are doing it with a translation. The left side is multiplied by 1 + \epsilon\frac{\vec{p}}{2} and right is multiplied by the conjugate 1 - \epsilon\frac{\vec{p}}{2}:
\begin{align} \Big(1 + &\epsilon\frac{\vec{p}}{2} \Big)\pmb{r_0}\Big(1 - \epsilon\frac{\vec{p}}{2} \Big) = \Big(1 + \epsilon\frac{\vec{p}}{2} \Big)\Big( \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l}\Big) \Big(1 - \epsilon\frac{\vec{p}}{2} \Big)\\ &= \bigg(\cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \frac{\epsilon}{2}\cos{\Big(\frac{\theta}{2}\Big)}\vec{p} + \frac{\epsilon}{2}\sin{\Big(\frac{\theta}{2}\Big)}\vec{p}\vec{l}\bigg)\Big(1 - \epsilon\frac{\vec{p}}{2} \Big)\\ &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \frac{\epsilon}{2}\cos{\Big(\frac{\theta}{2}\Big)}\vec{p} + \frac{\epsilon}{2}\sin{\Big(\frac{\theta}{2}\Big)}\vec{p}\vec{l} - \frac{\epsilon}{2}\cos{\Big(\frac{\theta}{2}\Big)}\vec{p} - \frac{\epsilon}{2}\sin{\Big(\frac{\theta}{2}\Big)}\vec{l}\vec{p} \\ &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \epsilon\sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{p} \times \vec{l}\Big) \tag{2} \end{align}However, to obtain a general (e.g. screw) displacement dual qauternion, we need to use another translation quaternion, 1 + \epsilon\frac{\vec{d}}{2}, for the displacement \vec{d} parallel to the rotation axis L to equation (2). Here we are concatenating/combine operations instead of transforming one operation, so there is only a simple one-side multiplication that needs to be done.
\begin{align} \bigg(1 + &\epsilon\frac{\vec{d}}{2}\bigg)\bigg( \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \epsilon\sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{p} \times \vec{l}\Big) \bigg) \\ &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \epsilon\bigg(\sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{p} \times \vec{l}\Big) + \frac{1}{2}\cos{\Big(\frac{\theta}{2}\Big)}\vec{d} + \frac{1}{2}\sin{\Big(\frac{\theta}{2}\Big)}\vec{d}\vec{l}\bigg)\tag{3} \end{align} and since \vec{d} is parrallel to \vec{l} then \vec{d}\vec{l} = \big( \vec{d}\times\vec{l}\big) - \vec{d}\cdot\vec{l} = -d and equation (3) becomes \begin{align} & \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \epsilon\bigg(\sin{\Big(\frac{\theta}{2}\Big)}\vec{m} + \frac{\vec{d}}{2}\cos{\Big(\frac{\theta}{2}\Big)} - \frac{d}{2}\sin{\Big(\frac{\theta}{2}\Big)}\bigg)\\ &= \cos{\Big(\frac{\theta}{2}\Big)} - \epsilon\frac{d}{2}\sin{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \epsilon\Big(\sin{\Big(\frac{\theta}{2}\Big)}\vec{m} + \frac{d}{2}\cos{\Big(\frac{\theta}{2}\Big)}\vec{l} \Big)\tag{4} \end{align}AN ALTERNATIVE GEOMETRIC DERIVATION OF EQUATION (4)
In Figure 1, the screw axis \mathrm{L} has unit direction vector \vec{l} and is represented by Plücker coordinates (\vec{m}, \vec{l}) where \vec{m} = \vec{p}\times\vec{l} and \vec{p} is from the origin and can be to any point \mathrm{P} on line \mathrm{L}. The following formulas are general for any point \mathrm{P} but we will choose \vec{p} perpendicular to \mathrm{L} so that \vec{p} = \vec{p}_{\bot}. Furthermore, \vec{t} is the translation vector of any point by the screw displacement so the distance traveled parallel to \mathrm{L} is d = \vec{t}\cdot\vec{l}.
To find \vec{m} in terms of the screw displacement, start by screw displacing the origin point of the coordinate system at the tail of \vec{p}_{\bot} as shown in Figure 1. This establishes the geometry we need to work with in finding the equation for the location of point \mathrm{P} at the tip of \vec{p}_{\bot} only in terms of \vec{t}, \vec{l}, and the rotation angle \theta. Next, proceed in a similar manner as the derivation of equations (2) to (5) in post Mozzi-Chasles' Screw Theorem, Half-Turn Equivalence and Combining Successive Screw Displacements.
For \vec{p_2}+\vec{p_1}, begin by using the relation
\tan{\Big(\frac{\theta}{2}\Big)} = \frac{\Vert \vec{p_2} - \vec{p_1} \Vert}{\Vert \vec{p_2} + \vec{p_1} \Vert}then cross-multiplying \vec{p_2}-\vec{p_1} with the unit vector \vec{l} to get:
\vec{p_2}+\vec{p_1} = \cot{\Big(\frac{\theta}{2}\Big)} \Big(\vec{p_2}-\vec{p_1}\Big) \times \vec{l}The vector that is half the length of \vec{p_2}+\vec{p_1} but in the opposite direction from the bisecting point \mathrm{B} to point \mathrm{P} at the tip of \vec{p}_{\bot} is:
-\frac{1}{2}\Big(\vec{p_2}+\vec{p_1}\Big) = \frac{1}{2} \cot{\Big(\frac{\theta}{2}\Big)}\vec{l}\times\Big(\vec{p_2}-\vec{p_1}\Big)and because
\Big(\vec{p_2}-\vec{p_1}\Big) = \vec{t} - \Big(\vec{t}\cdot\vec{l} \Big) \vec{l}then we get
-\frac{1}{2}\Big(\vec{p_2}+\vec{p_1}\Big) = \frac{1}{2} \cot{\Big(\frac{\theta}{2}\Big)}\vec{l}\times\vec{t}From Figure 1 we see that three successive vectors, the first starting from the coordinate system origin to the mid-point of \vec{t}, then the second from the mid-point of \vec{t} to point \mathrm{B} and finally the third from point \mathrm{B} towards point \mathrm{P}, give the same result as \vec{p}_{\bot}. So we have:
\begin{align} \vec{p}_{\bot} &= \frac{1}{2}\vec{t} - \frac{1}{2}\Big(\vec{t}\cdot\vec{l} \Big) \vec{l} - \frac{1}{2}\Big(\vec{p_2}+\vec{p_1}\Big) \\ &= \frac{1}{2}\vec{t} - \frac{1}{2}\Big(\vec{t}\cdot\vec{l} \Big) \vec{l} + \frac{1}{2} \cot{\Big(\frac{\theta}{2}\Big)}\vec{l}\times\vec{t}\\ &= \frac{1}{2} \bigg(\vec{t} - \Big(\vec{t}\cdot\vec{l} \Big) \vec{l} + \cot{\Big(\frac{\theta}{2}\Big)}\vec{l}\times\vec{t} \bigg) \end{align}Finally, for \vec{m} we have:
\vec{m} = \vec{p}_{\bot} \times \vec{l} = \frac{1}{2} \bigg(\vec{t}\times \vec{l} + \cot{\Big(\frac{\theta}{2}\Big)}\Big(\vec{l}\times\vec{t}\Big)\times \vec{l} \bigg)\tag{5}We know from post Unit Dual Quaternion For Translation And Rotation that we use the dual qauternion rotation and translation operator:
\pmb{r_0} + \frac{\epsilon}{2}\vec{t}\pmb{r_0}\tag{6}We recall from equation (23) of the post Extracting the Cross and Dot Products from the Quaternion Rotation Operator that:
\pmb{r_0} = \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l}\tag{7}Substituting equation (7) into (6) gives:
\begin{align} \pmb{r_0} + \frac{\epsilon}{2}\vec{t}\pmb{r_0} &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \frac{\epsilon}{2}\bigg( \cos{\Big(\frac{\theta}{2}\Big)}\vec{t} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{t}\vec{l}\bigg)\\ &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \frac{\epsilon}{2}\bigg( \cos{\Big(\frac{\theta}{2}\Big)}\vec{t} - \sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{t}\cdot\vec{l}\Big) + \sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{t}\times\vec{l}\Big)\bigg)\tag{8}\\ \end{align}Now let's multiply both sides of equation (5) by \sin{\big(\frac{\theta}{2} \big)}:
\sin{\Big(\frac{\theta}{2} \Big)}\vec{m} = \frac{1}{2} \bigg(\sin{\Big(\frac{\theta}{2} \Big)}\Big(\vec{t}\times \vec{l}\Big) + \cos{\Big(\frac{\theta}{2}\Big)}\Big(\vec{l}\times\vec{t}\Big)\times \vec{l} \bigg)\tag{9}rearranging (9):
\sin{\Big(\frac{\theta}{2} \Big)}\Big(\vec{t}\times \vec{l}\Big) = 2\sin{\Big(\frac{\theta}{2} \Big)}\vec{m} - \cos{\Big(\frac{\theta}{2}\Big)}\Big(\vec{l}\times\vec{t}\Big)\times \vec{l}\tag{10}Substituting (10) into (8) gives:
\begin{align} \pmb{r_0} + \frac{\epsilon}{2}&\vec{t}\pmb{r_0}\\ &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l}\\ &+ \frac{\epsilon}{2}\bigg( \cos{\Big(\frac{\theta}{2}\Big)}\vec{t} - \sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{t}\cdot\vec{l}\Big) + 2\sin{\Big(\frac{\theta}{2} \Big)}\vec{m} - \cos{\Big(\frac{\theta}{2}\Big)}\Big(\vec{l}\times\vec{t}\Big)\times \vec{l}\bigg)\\\\ &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l}\\ &+ \frac{\epsilon}{2}\bigg( \cos{\Big(\frac{\theta}{2}\Big)}\vec{t} - \sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{t}\cdot\vec{l}\Big) + 2\sin{\Big(\frac{\theta}{2} \Big)}\vec{m} + \cos{\Big(\frac{\theta}{2}\Big)}\Big(\vec{l}\cdot\vec{t}\Big)\vec{l} - \cos{\Big(\frac{\theta}{2}\Big)}\vec{t}\bigg)\\\\ &= \cos{\Big(\frac{\theta}{2}\Big)} - \frac{\epsilon}{2}\sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{t}\cdot\vec{l}\Big)\\ &+ \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \epsilon\bigg( \sin{\Big(\frac{\theta}{2} \Big)}\vec{m} + \frac{1}{2}\cos{\Big(\frac{\theta}{2}\Big)}\Big(\vec{l}\cdot\vec{t}\Big)\vec{l}\bigg)\\ \\ &= \cos{\Big(\frac{\theta}{2}\Big)} - \epsilon\frac{d}{2}\sin{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \epsilon\bigg(\sin{\Big(\frac{\theta}{2}\Big)}\vec{m} + \frac{d}{2}\cos{\Big(\frac{\theta}{2}\Big)}\vec{l} \bigg)\tag{11} \end{align}Equations (4) and (11) are the same and can be simplified further since a Taylor series expansion of every function f of dual numbers yeilds the rule that:
f\big(a + \epsilon b \big) = f\big(a\big) + \epsilon b f^{'}\big(a\big)hence
\begin{align} \cos{\Big(\frac{\theta + \epsilon d}{2}\Big)} &= \cos{\Big(\frac{\theta}{2}\Big)} - \epsilon\frac{d}{2}\sin{\Big(\frac{\theta}{2}\Big)}\\ \sin{\Big(\frac{\theta + \epsilon d}{2}\Big)} &= \sin{\Big(\frac{\theta}{2}\Big)} + \epsilon\frac{d}{2}\cos{\Big(\frac{\theta}{2}\Big)} \end{align}Letting \sigma = \pmb{r_0} + \frac{\epsilon}{2}\vec{t}\pmb{r_0} and substituting the two equations above into (4) or (11) gives us:
\begin{align} \sigma &= \pmb{r_0} + \frac{\epsilon}{2}\vec{t}\pmb{r_0}\\ &=\cos{\Big(\frac{\theta + \epsilon d}{2}\Big)} + \bigg(\sin{\Big(\frac{\theta}{2}\Big)} + \epsilon\frac{d}{2}\cos{\Big(\frac{\theta}{2}\Big)}\bigg)\vec{l} + \sin{\Big(\frac{\theta}{2}\Big)}\epsilon\vec{m}\\ &=\cos{\Big(\frac{\theta + \epsilon d}{2}\Big)} + \bigg(\sin{\Big(\frac{\theta}{2}\Big)} + \epsilon\frac{d}{2}\cos{\Big(\frac{\theta}{2}\Big)}\bigg)\vec{l} + \bigg(\sin{\Big(\frac{\theta}{2}\Big)} + \epsilon\frac{d}{2}\cos{\Big(\frac{\theta}{2}\Big)}\bigg)\epsilon\vec{m}\\ &= \cos{\Big(\frac{\theta + \epsilon d}{2}\Big)} + \sin{\Big(\frac{\theta + \epsilon d}{2}\Big)}\Big(\vec{l} + \epsilon\vec{m} \Big)\tag{12} \end{align}By introducing the following dual angle and dual vector
\begin{align} \bar{\theta} &= \theta + \epsilon d \\ \bar{\vec{l}} &= \vec{l} + \epsilon\vec{m} \end{align}then equation (12) can be rewritten into a very succinct form:
\sigma = \cos{\Big(\frac{\bar{\theta}}{2}\Big)} + \bar{\vec{l}}\sin{\Big(\frac{\bar{\theta}}{2}\Big)}\tag{13}IGNORE BELOW.
Applying the dual quaternion displacement operator to the Plücker Coordinates
\begin{align} \pmb{\hat{s}}\big(\vec{l} + \epsilon\vec{m}\big)\pmb{\bar{\hat{s}}^{*}} &= \big(\pmb{r_0} + \frac{\epsilon}{2}\vec{d}\pmb{r_0}\big)\big( \vec{l} + \epsilon\vec{m}\big)\big( \pmb{{r_0}^{*}} - \frac{\epsilon}{2}\pmb{{r_0}^{*}}\vec{d}^{*}\big) \\ &= \big(\pmb{r_0}\vec{l} + \epsilon\pmb{r_0}\vec{m} + \frac{\epsilon}{2}\vec{d}\pmb{r_0}\vec{l}\big)\big( \pmb{{r_0}^{*}} - \frac{\epsilon}{2}\pmb{{r_0}^{*}}\vec{d}^{*}\big)\\ &= \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} - \frac{\epsilon}{2}\pmb{r_0}\vec{l}\pmb{{r_0}^{*}}\vec{d}^{*} + \epsilon\pmb{r_0}\vec{m}\pmb{{r_0}^{*}} + \frac{\epsilon}{2}\vec{d}\pmb{r_0}\vec{l}\pmb{{r_0}^{*}}\\ &= \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} + \epsilon\bigg(\pmb{r_0}\vec{m}\pmb{{r_0}^{*}} + \frac{1}{2}\Big(\pmb{r_0}\vec{l}\pmb{{r_0}^{*}}\vec{d}^{*} + \vec{d}\pmb{r_0}\vec{l}\pmb{{r_0}^{*}}\Big) \bigg)\tag{2} \\ \end{align}Letting \vec{l^{'}} + \epsilon\vec{m^{'}} = \pmb{\hat{s}}\big(\vec{l} + \epsilon\vec{m}\big)\pmb{\bar{\hat{s}}^{*}} then:
\begin{align} \vec{l^{'}} &= \pmb{r_0}\vec{l}\pmb{{r_0}^{*}}\tag{3} \\ \vec{m^{'}} &= \pmb{r_0}\vec{m}\pmb{{r_0}^{*}} + \frac{1}{2}\Big( \pmb{r_0} \vec{l} \pmb{{r_0}^{*}} \vec{d}^{*} + \vec{d}\pmb{r_0}\vec{l}\pmb{{r_0}^{*}}\Big) \\ &= \pmb{r_0}\vec{m}\pmb{{r_0}^{*}} + \frac{1}{2}\bigg( \Big(\pmb{r_0} \vec{l} \pmb{{r_0}^{*}}\Big) \cdot \vec{d} - \Big(\pmb{r_0} \vec{l} \pmb{{r_0}^{*}} \times \vec{d}\Big) - \vec{d} \cdot \Big(\pmb{r_0} \vec{l} \pmb{{r_0}^{*}}\Big) + \Big(\vec{d} \times \pmb{r_0} \vec{l} \pmb{{r_0}^{*}} \Big)\bigg) \\ &= \pmb{r_0}\vec{m}\pmb{{r_0}^{*}} + \vec{d} \times \pmb{r_0} \vec{l} \pmb{{r_0}^{*}}\tag{4} \\ \end{align}Therfore
\vec{l^{'}} + \epsilon\vec{m^{'}} = \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} + \epsilon\Big( \pmb{r_0}\vec{m}\pmb{{r_0}^{*}} + \vec{d} \times \pmb{r_0} \vec{l} \pmb{{r_0}^{*}} \Big)\tag{5}In terms of \theta we use equation (23) from Extracting the Cross and Dot Products from the Quaternion Rotation Operator and have
\begin{align} \vec{l^{'}} &= \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} = \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} \\ \pmb{r_0}\vec{m}\pmb{{r_0}^{*}} &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{m} \end{align} which are substituted into (4) above to give: \begin{align} \vec{m^{'}} &= \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{m} + \cos{\Big(\frac{\theta}{2}\Big)}\vec{d} + \sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{d}\times\vec{l}\Big)\tag{6} \\ \end{align}Therefore:
\vec{l^{'}} + \epsilon\vec{m^{'}} = \cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{l} + \epsilon\bigg(\cos{\Big(\frac{\theta}{2}\Big)} + \sin{\Big(\frac{\theta}{2}\Big)}\vec{m} + \cos{\Big(\frac{\theta}{2}\Big)}\vec{d} + \sin{\Big(\frac{\theta}{2}\Big)}\Big(\vec{d}\times\vec{l}\Big)\bigg)\tag{7}Since \vec{m} = \vec{p}\times\vec{l} in equation (6), let's first look at what happens to \vec{p} with transformation. From equation (7) in Unit Dual Quaternion For Translation And Rotation, we have for 1 + \epsilon\vec{p}:
1 + \epsilon\vec{p^{'}} = 1 + \epsilon\big(\pmb{r_0}\vec{p}\pmb{{r_0}^{*}} + \vec{d}\big)and therefore:
\vec{p^{'}} = \pmb{r_0}\vec{p}\pmb{{r_0}^{*}} + \vec{d}Now since vectors \vec{l} and \vec{p} are rotated around the same axis by the same amount then their cross-product \vec{m} is as well so \pmb{r_0}\vec{m}\pmb{{r_0}^{*}} = \pmb{r_0}\big(\vec{p}\times\vec{l}\big)\pmb{{r_0}^{*}} = \pmb{r_0}\vec{p}\pmb{{r_0}^{*}} \times \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} and:
\begin{align} \vec{m^{'}} &= \vec{p^{'}}\times\vec{l^{'}} \\ &= \Big( \pmb{r_0}\vec{p}\pmb{{r_0}^{*}} + \vec{d} \Big) \times \Big( \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} \Big) \\ &= \pmb{r_0}\vec{p}\pmb{{r_0}^{*}} \times \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} + \vec{d} \times \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} \\ &= \pmb{r_0}\vec{m}\pmb{{r_0}^{*}} + \vec{d} \times \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} \end{align}Since the cross-product of two pure quaternions \vec{a} and \vec{b} is \vec{a}\times\vec{b} = \frac{1}{2}\Big(\vec{b}\vec{a}^{*} + \vec{a}\vec{b} \Big) then:
\vec{d} \times \pmb{r_0}\vec{l}\pmb{{r_0}^{*}} = \frac{1}{2}\Big(\pmb{r_0}\vec{l}\pmb{{r_0}^{*}}\vec{d}^{*} + \vec{d}^{*}\pmb{r_0}\vec{l}\pmb{{r_0}^{*}} \Big)
No comments:
Post a Comment