Processing math: 100%

Tuesday, December 31, 2019

Parallelograms, Plucker Coordinates and Dual Numbers

Figure \mathrm{1} will be used to point out some properties of parallelograms that have bearing on Plucker coordinates. The two parallelograms \mathrm{1} and \mathrm{2} shown in the figure have the same base lengths \mathrm{b} and the same length heights \mathrm{h}.


Figure 1

The area \mathrm{A} of a parallelogram is just:

\mathrm{A} = \mathrm{b}\mathrm{h}\tag{1}

So both parallelograms have the same area:

\mathrm{A_1} = \big(\mathrm{a} + \mathrm{b}\big)\mathrm{h} - \frac{1}{2}\big(\mathrm{a}\mathrm{h} + \mathrm{a}\mathrm{h}\big) = \mathrm{b}\mathrm{h}
\mathrm{A_2} = \big(\mathrm{c} + \mathrm{b}\big)\mathrm{h} - \frac{1}{2}\big(\mathrm{c}\mathrm{h} + \mathrm{c}\mathrm{h}\big) = \mathrm{b}\mathrm{h}

Therefore

\mathrm{A_1} = \mathrm{A_2}

This will be the case for all parallelograms of same length bases and heights independent of the lengths like \mathrm{a} and \mathrm{c} and therefore independent of the length of their diagonals like \mathrm{d_1} and \mathrm{d_2}.

Since the acute angle between a diagonal \mathrm{d} and it's base \mathrm{b} is \theta then the area of a parallelogram can be written as:

\mathrm{A} = \mathrm{b}\mathrm{d}\sin{(\theta)}\tag{2}

If we associate the vector \vec{b} with the base \mathrm{b} and vector \vec{d} with the diagonal \mathrm{d} then the area of the parallelogram is the same as the absolute value of \vec{b} \times \vec{d}:

\Vert \vec{b} \times \vec{d} \Vert = \Vert \vec{b} \Vert\Vert \vec{d} \Vert \sin{(\theta)} = \mathrm{A}\tag{3}

Which also means from our two parallelograms that:

\begin{align} \Vert \vec{b} \Vert\Vert \vec{d_1} \Vert \sin{(\theta_1)} &= \Vert \vec{b} \Vert\Vert \vec{d_2} \Vert \sin{(\theta_2)} \\ \Vert \vec{b} \times \vec{d_1} \Vert &= \Vert \vec{b} \times \vec{d_2} \Vert \end{align}

Let the direction of the cross products be given by the unit vector \vec{u_m} then:

\vec{b} \times \vec{d} = \Vert \vec{b} \Vert\Vert \vec{d} \Vert \sin{(\theta)} \vec{u_m}

If both cross products have the same direction \vec{u_m} we then have:

\vec{b} \times \vec{d_1} = \vec{b} \times \vec{d_2}

Figure \mathrm{2} shows a line \mathrm{L} in \mathrm{3D} space with vectors \vec{p} and \vec{p_{\perp}} to points on \mathrm{L}, a vector \vec{l} parallel with line \mathrm{L} and the vector \vec{m} = \vec{p} \times \vec{l}.


Figure 2

The vector \vec{p_{\perp}} happens to be perpendicular to \mathrm{L} but from our previous discussion, a vector \vec{q} to any point on \mathrm{L} will satisfy the following equality:

\vec{q} \times \vec{l} = \vec{p} \times \vec{l} = \vec{m}

Now if you have \vec{l} and \vec{m} then how do you find \vec{q} given that \vec{q} can be to any point on the line \mathrm{L}? We can make this well-defined by choosing \vec{q} = \vec{p_{\perp}}. With this choice, \vec{l}, \vec{p_{\perp}} and \vec{m} are orthogonal thus \vec{l} \cdot \vec{p_{\perp}} = 0 and vector \vec{l} \times \vec{m} is in the same direction as \vec{p_{\perp}} with magnitude

\begin{align} \Vert \vec{l} \times \vec{m} \Vert &= \Vert \vec{l} \Vert\Vert \vec{m} \Vert \\ &= \Vert \vec{l} \Vert\Vert \vec{p_{\perp}} \times \vec{l} \Vert \\ &= {\Vert \vec{l} \Vert}^{2}\Vert \vec{p_{\perp}}\Vert \end{align}

and therefore

\Vert \vec{p_{\perp}} \Vert = \frac{\Vert \vec{l} \times \vec{m} \Vert}{{\Vert \vec{l} \Vert}^{2}} = \frac{\Vert \vec{m} \Vert}{\Vert \vec{l} \Vert}\tag{4}
\vec{p_{\perp}} = \frac{\vec{l} \times \vec{m}}{{\Vert \vec{l} \Vert}^{2}}\tag{5}

By making \vec{l} a unit vector, \Vert \vec{l} \Vert = 1, we get:

\Vert \vec{p_{\perp}} \Vert = \Vert \vec{m} \Vert\tag{6}
\vec{p_{\perp}} = \vec{l} \times \vec{m}\tag{7}

Another way to get equation (7) is with a vector triple product expansion of \vec{l} \times \vec{m} = \vec{l} \times \big(\vec{p_{\perp}} \times \vec{l}\big).

\begin{align} \vec{l} \times \big(\vec{p_{\perp}} \times \vec{l}\big) &= \big(\vec{l} \cdot \vec{l} \big)\vec{p_{\perp}} - \big(\vec{l} \cdot \vec{p_{\perp}} \big) \vec{l} \\ &= {\Vert \vec{l} \Vert}^{2} \vec{p_{\perp}} \\ {\Vert \vec{l} \Vert}^{2} \vec{p_{\perp}} &= \vec{l} \times \vec{m} \\ \vec{p_{\perp}} &= \frac{\vec{l} \times \vec{m}}{{\Vert \vec{l} \Vert}^{2}} = \vec{l} \times \vec{m} \tag{8} \end{align}

Unit vector \vec{l} and vector \vec{m} will be the Plucker coordinates \big(\vec{l}, \vec{m}\big) of line \mathrm{L}. The dual number representation \pmb{\hat{l}} of these coordinates is:

\begin{align} \pmb{\hat{l}} &= \pmb{l} + \epsilon \pmb{m} \\ &= \big(0 + \vec{l}\big) + \epsilon \big(0 + \vec{m}\big) \\ &= \vec{l} + \epsilon \vec{m} \end{align}

where \vec{l} = \mathrm{x_l}\vec{i} + \mathrm{y_l}\vec{j} + \mathrm{z_l}\vec{k} and \vec{m} = \mathrm{x_m}\vec{i} + \mathrm{y_m}\vec{j} + \mathrm{z_m}\vec{k}.

No comments:

Post a Comment