To see how any 3D vector \vec{v} = \big(a, b, c\big) can be represented as a unit dual quaternion, let's start with the dual quaternion \pmb{\hat{q}} = \pmb{q_0} + \epsilon\pmb{q_{\epsilon}} with quaternions components \pmb{q_0} and \pmb{q_{\epsilon}}. The real and imaginary parts of \pmb{q_0} and \pmb{q_{\epsilon}} are given as follows with the imaginary part italicized and an arrow above:
\begin{align} \pmb{q_0} &= w_0 + \vec{q}_{0} = w_0 + \big(x_0\vec{i} + y_0\vec{j} + z_0\vec{k}\big)\\ \pmb{q_{\epsilon}} &= w_{\epsilon} + \vec{q}_{\epsilon} = w_{\epsilon} + \big(x_{\epsilon}\vec{i} + y_{\epsilon}\vec{j} + z_{\epsilon}\vec{k} \big) \end{align}Their respective conjugates are:
\begin{align} \pmb{q_{0}^{*}} &= w_0 - \vec{q}_{0} = w_0 - \big(x_0\vec{i} + y_0\vec{j} + z_0\vec{k}\big)\\ \pmb{q_{\epsilon}^{*}} &= w_{\epsilon} - \vec{q}_{\epsilon} = w_{\epsilon} - \big(x_{\epsilon}\vec{i} + y_{\epsilon}\vec{j} + z_{\epsilon}\vec{k} \big) \end{align}Unlike regular quaternions, there are three different conjugations of dual quaternions which depend on whether:
The dual number is conjugated
\pmb{\bar{\hat{q}}} = \pmb{q_0} - \epsilon\pmb{q_{\epsilon}}This finds little use except in deriving the third type of conjugation \pmb{\bar{\hat{q}}^{*}}.
-
The quaternion components are conjugated
\pmb{\hat{q}^{*}} = \pmb{q_{0}^{*}} + \epsilon\pmb{q_{\epsilon}^{*}}The result of \pmb{\hat{q}}\pmb{\hat{q}^{*}} is a dual scalar but it can be just a regular scalar when the dot-product \pmb{q_{0}} \cdot \pmb{q_{\epsilon}} = 0 (i.e. when \pmb{q_{0}} and \pmb{q_{\epsilon}} are orthogonal 4-tuples).
-
The dual number and quaternion components are both conjugated.
\pmb{\bar{\hat{q}}^{*}} = \pmb{q_{0}^{*}} - \epsilon\pmb{q_{\epsilon}^{*}}The product \pmb{\hat{q}}\pmb{\bar{\hat{q}}^{*}} is a dual quaternion whose real part is a scalar and dual part is a vector.
The conjugate \pmb{\hat{q}^{*}} = \pmb{q_{0}^{*}} + \epsilon\pmb{q_{\epsilon}^{*}} is used to define the norm of \pmb{\hat{q}}:
\begin{align} \Vert \pmb{\hat{q}} \Vert &= \sqrt{\pmb{\hat{q}\hat{q}^{*}}} \\ &= \sqrt{\big(\pmb{q_0} + \epsilon\pmb{q_{\epsilon}}\big)\big(\pmb{q_{0}^{*}} + \epsilon\pmb{q_{\epsilon}^{*}}\big)} \\ &= \sqrt{\pmb{q_0q_{0}^{*}} + \epsilon\big(\pmb{q_0q_{\epsilon}^{*}} + \pmb{q_{\epsilon}q_0^{*}}\big)} \\ &= \sqrt{\pmb{q_0q_{0}^{*}} + 2\epsilon\big(\pmb{q_0} \cdot \pmb{q_{\epsilon}}\big)} \end{align}where
\begin{align} \pmb{q_0q_{0}^{*}} &= \big(w_0 + x_0\pmb{i} + y_0\pmb{j} + z_0\pmb{k}\big)\big( w_0 - x_0\pmb{i} - y_0\pmb{j} - z_0\pmb{k}\big) \\ &= w_0^2 + x_0^2 + y_0^2 + z_0^2 \end{align}and
\begin{align} \pmb{q_0q_{\epsilon}^{*}} + \pmb{q_{\epsilon}q_0^{*}} &= 2\big(w_0 w_{\epsilon} + x_0 x_{\epsilon} + y_0 y_{\epsilon} + z_0 z_{\epsilon} \big) \\ &= 2\big(\pmb{q_0} \cdot \pmb{q_{\epsilon}}\big) \end{align}A unit dual quaternion has a norm \Vert \pmb{\hat{q}} \Vert = 1. Choosing \pmb{q_0} and \pmb{q_{\epsilon}} to be orthogonal makes the dot-product \pmb{q_0} \cdot \pmb{q_{\epsilon}} = 0 which then leaves us with \sqrt{\pmb{q_0q_{0}^{*}}} = 1 and therefore w_0^2 + x_0^2 + y_0^2 + z_0^2 = 1. Choosing \vec{q}_{0} = 0, \mathrm{q_{\epsilon}} = 0 and the coefficients of \vec{q}_{\epsilon} to be \big(a, b, c\big) of vector \pmb{v} satisfies the conditions of the \pmb{q_0} \cdot \pmb{q_{\epsilon}} = 0 and w_0^2 + x_0^2 + y_0^2 + z_0^2 = 1:
w_0 w_{\epsilon} + x_0 x_{\epsilon} + y_0 y_{\epsilon} + z_0 z_{\epsilon} = w_0(0) + (0)a + (0)b + (0)c = 0w_0^2 + x_0^2 + y_0^2 + z_0^2 = w_0^2 + (0)^2 + (0)^2 + (0)^2 = w_0^2 w_0^2 = 1
Thus w_0 = 1 and the vector \vec{v} = \big(a, b, c\big) is encoded in a dual quaternion as:
\begin{align} &1 + \epsilon\big( a\vec{i} + b\vec{j} + c\vec{k} \big) \\ &1 + \epsilon\vec{v} \end{align}
No comments:
Post a Comment